Part Number Hot Search : 
F472J GD4011 81487EIB 81487EIB FM101 100BG 00380 0HSR3
Product Description
Full Text Search
 

To Download 74ALVC08PW Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 INTEGRATED CIRCUITS
DATA SHEET
74ALVC08 Quad 2-input AND gate
Product specification Supersedes data of 2003 Feb 04 2003 May 16
Philips Semiconductors
Product specification
Quad 2-input AND gate
FEATURES * Wide supply voltage range from 1.65 to 3.6 V * 3.6 V tolerant inputs/outputs * CMOS low power consumption * Direct interface with TTL levels (2.7 to 3.6 V) * Power-down mode * Latch-up performance exceeds 250 mA * Complies with JEDEC standard: JESD8-7 (1.65 to 1.95 V) JESD8-5 (2.3 to 2.7 V) JESD8B/JESD36 (2.7 to 3.6 V). * ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V. QUICK REFERENCE DATA GND = 0 V; Tamb = 25 C. SYMBOL tPHL/tPLH PARAMETER propagation delay nA, nB to nY CONDITIONS VCC = 1.8 V; CL = 30 pF; RL = 1 k DESCRIPTION
74ALVC08
The 74ALVC08 is a high-performance, low-power, low-voltage, Si-gate CMOS device and superior to most advanced CMOS compatible TTL families. Schmitt-trigger action at all inputs makes the circuit tolerant for slower input rise and fall times. The 74ALVC08 provides the 2-input AND function.
TYPICAL 2.7 ns ns ns ns
UNIT
VCC = 2.5 V; CL = 30 pF; RL = 500 1.9 VCC = 2.7 V; CL = 50 pF; RL = 500 2.2 VCC = 3.3 V; CL = 50 pF; RL = 500 2.0 CI CPD Notes 1. CPD is used to determine the dynamic power dissipation (PD in W). PD = CPD x VCC2 x fi x N + (CL x VCC2 x fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in Volts; N = total load switching outputs; (CL x VCC2 x fo) = sum of the outputs. 2. The condition is VI = GND to VCC. input capacitance power dissipation capacitance per buffer VCC = 3.3 V; notes 1 and 2 3.5 24
pF pF
2003 May 16
2
Philips Semiconductors
Product specification
Quad 2-input AND gate
ORDERING INFORMATION PACKAGE TYPE NUMBER 74ALVC08D 74ALVC08PW 74ALVC08BQ FUNCTION TABLE See note 1. INPUT nA L L H H Note 1. H = HIGH voltage level; L = LOW voltage level. PINNING PIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SYMBOL 1A 1B 1Y 2A 2B 2Y GND 3Y 3A 3B 4Y 4A 4B VCC DESCRIPTION data input data input data output data input data input data output ground (0 V) data output data input data input data output data input data input supply voltage
2Y GND 6 7
MNA220
74ALVC08
TEMPERATURE RANGE -40 to +85 C -40 to +85 C -40 to +85 C
PINS 14 14 14
PACKAGE SO14 TSSOP14 DHVQFN14
MATERIAL plastic plastic plastic
CODE SOT108-1 SOT402-1 SOT762-1
OUTPUT nB L H L H nY L L L H
handbook, halfpage
1A 1B 1Y 2A 2B
1 2 3 4 5
14 VCC 13 4B 12 4A
08
11 4Y 10 3B 9 3A
8 3Y
Fig.1 Pin configuration SO14 and TSSOP14.
2003 May 16
3
Philips Semiconductors
Product specification
Quad 2-input AND gate
74ALVC08
handbook, halfpage
1A 1
VCC 14 13 12 4B 4A 4Y 3B 3A B
MNA221
1B 1Y 2A 2B 2Y
2 3 4 5 6 7 Top view GND 8 3Y
handbook, halfpage
A
GND(1)
11 10 9
Y
MNA950
(1) The die substrate is attached to this pad using conductive die attach material. It can not be used as a supply pin or input.
Fig.2 Pin configuration DHVQFN14.
Fig.3 Logic diagram (one gate).
handbook, halfpage
1 2
&
3
handbook, halfpage
1 2 4 5 9 10 12 13
1A 1B 2A 2B 3A 3B 4A 4B
1Y
3 4 & 6
2Y
6
5
3Y
8
9 10
&
8
4Y
11 12 &
MNA222
11
13
MNA223
Fig.4 Function diagram.
Fig.5 IEC logic symbol.
2003 May 16
4
Philips Semiconductors
Product specification
Quad 2-input AND gate
RECOMMENDED OPERATING CONDITIONS SYMBOL VCC VI VO Tamb tr, tf PARAMETER supply voltage input voltage output voltage operating ambient temperature input rise and fall times VCC = 1.65 to 2.7 V VCC = 2.7 to 3.6 V VCC = 1.65 to 3.6 V VCC = 0 V; Power-down mode CONDITIONS 0 0 0 -40 0 0 MIN. 1.65
74ALVC08
MAX. 3.6 3.6 VCC 3.6 +85 20 10 V V V V
UNIT
C ns/V ns/V
LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V). SYMBOL VCC IIK VI IOK VO IO ICC, IGND Tstg Ptot Notes 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. When VCC = 0 V (Power-down mode), the output voltage can be 3.6 V in normal operation. 3. For SO14 packages: above 70 C derate linearly with 8 mW/K. For TSSOP14 packages: above 60 C derate linearly with 5.5 mW/K. For DHVQFN14 packages: above 60 C derate linearly with 4.5 mW/K. PARAMETER supply voltage input diode current input voltage output diode current output voltage output source or sink current VCC or GND current storage temperature power dissipation Tamb = -40 to +85 C; note 3 VO > VCC or VO < 0 notes 1 and 2 Power-down mode; note 2 VO = 0 to VCC VI < 0 CONDITIONS - -0.5 - -0.5 -0.5 - - -65 - MIN. -0.5 MAX. +4.6 -50 +4.6 50 +4.6 50 100 +150 500 V mA V mA V mA mA C mW UNIT
VCC + 0.5 V
2003 May 16
5
Philips Semiconductors
Product specification
Quad 2-input AND gate
DC CHARACTERISTICS At recommended operating conditions; voltages are referenced to GND (ground = 0 V). TEST CONDITIONS SYMBOL PARAMETER OTHER Tamb = -40 to +85 C VIH HIGH-level input voltage 1.65 to 1.95 0.65 x VCC - 2.3 to 2.7 2.7 to 3.6 VIL LOW-level input voltage 2.3 to 2.7 2.7 to 3.6 VOL LOW-level output voltage VI = VIH or VIL IO = 100 A IO = 6 mA IO = 12 mA IO = 18 mA IO = 12 mA IO = 18 mA IO = 24 mA VOH HIGH-level output voltage VI = VIH or VIL IO = -100 A IO = -6 mA IO = -12 mA IO = -18 mA IO = -12 mA IO = -18 mA IO = -24 mA ILI Ioff ICC ICC input leakage current power OFF leakage current quiescent supply current additional quiescent supply current per input pin VI = 3.6 V or GND VI or VO = 3.6 V 1.65 to 3.6 1.65 2.3 2.3 2.7 3.0 3.0 3.6 0.0 VCC - 0.2 1.25 1.8 1.7 2.2 2.4 2.2 - - - - - 1.51 2.10 2.01 2.53 2.76 2.68 0.1 0.1 0.2 5 1.65 to 3.6 1.65 2.3 2.3 2.7 3.0 3.0 - - - - - - - - 0.11 0.17 0.25 0.16 0.23 0.30 1.7 2 - - - - - - - VCC (V) MIN. TYP.(1)
74ALVC08
MAX.
UNIT
- - - 0.7 0.8 0.2 0.3 0.4 0.6 0.4 0.4 0.55 - - - - - - - 5 10 20 750
V V V V V V V V V V V V V V V V V V V A A A A
1.65 to 1.95 -
0.35 x VCC V
VI = VCC or GND; IO = 0 3.6 VI = VCC - 0.6 V; IO = 0 3.0 to 3.6
Note 1. All typical values are measured at Tamb = 25 C.
2003 May 16
6
Philips Semiconductors
Product specification
Quad 2-input AND gate
AC CHARACTERISTICS TEST CONDITIONS SYMBOL PARAMETER WAVEFORMS Tamb = -40 to +85 C tPHL/tPLH propagation delay nA, nB to nY see Figs 6 and 7 1.65 to 1.95 2.3 to 2.7 2.7 3.0 to 3.6 Note 1. All typical values are measured at Tamb = 25 C. AC WAVEFORMS 1.2 1.0 - 1.2 2.7 1.9 2.2 2.0 VCC (V) MIN. TYP.(1)
74ALVC08
MAX.
UNIT
5.3 3.2 3.0 2.9
ns ns ns ns
handbook, halfpage
VI VM GND tPHL VOH tPLH
nA, nB input
nY output VOL
VM
MNA224
INPUT VCC 1.65 to 1.95 V 2.3 to 2.7 V 2.7 V 3.0 to 3.6 V VM 0.5 x VCC 0.5 x VCC 1.5 V 1.5 V VI VCC VCC 2.7 V 2.7 V tr = tf 2.0 ns 2.0 ns 2.5 ns 2.5 ns
Fig.6 Inputs nA, nB to output nY propagation delay times.
2003 May 16
7
Philips Semiconductors
Product specification
Quad 2-input AND gate
74ALVC08
handbook, full pagewidth
VEXT VCC PULSE GENERATOR VI D.U.T. RT CL RL VO RL
MNA616
VCC 1.65 to 1.95 V 2.3 to 2.7 V 2.7 V 3.0 to 3.6 V
VI VCC VCC 2.7 V 2.7 V
CL 30 pF 30 pF 50 pF 50 pF
RL 1 k 500 500 500
VEXT tPLH/tPHL open open open open tPZH/tPHZ GND GND GND GND tPZL/tPLZ 2 x VCC 2 x VCC 6V 6V
Definitions for test circuit: RL = Load resistor. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance should be equal to the output impedance Zo of the pulse generator.
Fig.7 Load circuitry for switching times.
2003 May 16
8
Philips Semiconductors
Product specification
Quad 2-input AND gate
PACKAGE OUTLINES SO14: plastic small outline package; 14 leads; body width 3.9 mm
74ALVC08
SOT108-1
D
E
A X
c y HE vMA
Z 14 8
Q A2 A1 pin 1 index Lp 1 e bp 7 wM L detail X (A 3) A
0
2.5 scale
5 mm
DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT mm A max. 1.75 A1 0.25 0.10 A2 1.45 1.25 A3 0.25 0.01 bp 0.49 0.36 c 0.25 0.19 D (1) 8.75 8.55 E (1) 4.0 3.8 0.16 0.15 e 1.27 0.05 HE 6.2 5.8 L 1.05 Lp 1.0 0.4 Q 0.7 0.6 0.028 0.024 v 0.25 0.01 w 0.25 0.01 y 0.1 0.004 Z (1) 0.7 0.3 0.028 0.012
inches 0.069
0.010 0.057 0.004 0.049
0.019 0.0100 0.35 0.014 0.0075 0.34
0.244 0.039 0.041 0.228 0.016
8 0o
o
Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. OUTLINE VERSION SOT108-1 REFERENCES IEC 076E06 JEDEC MS-012 JEITA EUROPEAN PROJECTION
ISSUE DATE 99-12-27 03-02-19
2003 May 16
9
Philips Semiconductors
Product specification
Quad 2-input AND gate
74ALVC08
TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm
SOT402-1
D
E
A
X
c y HE vMA
Z
14
8
Q A2 pin 1 index A1 Lp L (A 3) A
1
e bp
7
wM detail X
0
2.5 scale
5 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A max. 1.1 A1 0.15 0.05 A2 0.95 0.80 A3 0.25 bp 0.30 0.19 c 0.2 0.1 D (1) 5.1 4.9 E (2) 4.5 4.3 e 0.65 HE 6.6 6.2 L 1 Lp 0.75 0.50 Q 0.4 0.3 v 0.2 w 0.13 y 0.1 Z (1) 0.72 0.38 8 0o
o
Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT402-1 REFERENCES IEC JEDEC MO-153 JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-18
2003 May 16
10
Philips Semiconductors
Product specification
Quad 2-input AND gate
74ALVC08
DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; SOT762-1 14 terminals; body 2.5 x 3 x 0.85 mm
D
B
A
A A1 E c
terminal 1 index area
detail X
terminal 1 index area e 2 L
e1 b 6 vMCAB wM C y1 C
C y
1 Eh 14
7 e 8
13 Dh 0
9 X 2.5 scale 5 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A(1) max. 1 A1 0.05 0.00 b 0.30 0.18 c 0.2 D (1) 3.1 2.9 Dh 1.65 1.35 E (1) 2.6 2.4 Eh 1.15 0.85 e 0.5 e1 2 L 0.5 0.3 v 0.1 w 0.05 y 0.05 y1 0.1
Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. OUTLINE VERSION SOT762-1 REFERENCES IEC --JEDEC MO-241 JEITA --EUROPEAN PROJECTION ISSUE DATE 02-10-17 03-01-27
2003 May 16
11
Philips Semiconductors
Product specification
Quad 2-input AND gate
SOLDERING Introduction to soldering surface mount packages This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011). There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended. Reflow soldering Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. Typical reflow peak temperatures range from 215 to 250 C. The top-surface temperature of the packages should preferably be kept: * below 220 C for all the BGA packages and packages with a thickness 2.5mm and packages with a thickness <2.5 mm and a volume 350 mm3 so called thick/large packages * below 235 C for packages with a thickness <2.5 mm and a volume <350 mm3 so called small/thin packages. Wave soldering Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.
74ALVC08
To overcome these problems the double-wave soldering method was specifically developed. If wave soldering is used the following conditions must be observed for optimal results: * Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave. * For packages with leads on two sides and a pitch (e): - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board; - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves at the downstream end. * For packages with leads on four sides, the footprint must be placed at a 45 angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Typical dwell time is 4 seconds at 250 C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. Manual soldering Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 C.
2003 May 16
12
Philips Semiconductors
Product specification
Quad 2-input AND gate
Suitability of surface mount IC packages for wave and reflow soldering methods PACKAGE(1) BGA, LBGA, LFBGA, SQFP, TFBGA, VFBGA DHVQFN, HBCC, HBGA, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, HVSON, SMS PLCC(4), SO, SOJ LQFP, QFP, TQFP SSOP, TSSOP, VSO, VSSOP Notes not suitable not suitable(3)
74ALVC08
SOLDERING METHOD WAVE REFLOW(2) suitable suitable suitable suitable suitable
suitable not not recommended(4)(5) recommended(6)
1. For more detailed information on the BGA packages refer to the "(LF)BGA Application Note" (AN01026); order a copy from your Philips Semiconductors sales office. 2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods". 3. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface. 4. If wave soldering is considered, then the package must be placed at a 45 angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners. 5. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm. 6. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
2003 May 16
13
Philips Semiconductors
Product specification
Quad 2-input AND gate
DATA SHEET STATUS LEVEL I DATA SHEET STATUS(1) Objective data PRODUCT STATUS(2)(3) Development DEFINITION
74ALVC08
This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).
II
Preliminary data Qualification
III
Product data
Production
Notes 1. Please consult the most recently issued data sheet before initiating or completing a design. 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. DEFINITIONS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. DISCLAIMERS Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status `Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
2003 May 16
14
Philips Semiconductors
Product specification
Quad 2-input AND gate
NOTES
74ALVC08
2003 May 16
15
Philips Semiconductors - a worldwide company
Contact information For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.
(c) Koninklijke Philips Electronics N.V. 2003
SCA75
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
613508/02/pp16
Date of release: 2003
May 16
Document order number:
9397 750 11271


▲Up To Search▲   

 
Price & Availability of 74ALVC08PW

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X